

Trillium Bridge
Bridging Patient Summaries across the Atlantic

 5

WP 3 – Assembling Interoperability Assets

Deliverable 3.2

EU/US CTS-2 Infrastructure with

selected Transcoding, Translation

and Terminology Mappings for pilot 10

use cases - Transformer
Version: 1.3

Date of Issue: September 21, 2015

FP7-610756 Trillium Bridge D3.2 EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings for pilot use cases

September 21, 2015, D3.2v1.3 Page 2 of 37

Document Information

Deliverable name (dc:title): EU/US CTS-2 Infrastructure with selected Transcoding, Translation and

Terminology Mappings for pilot use cases – Transformer

Deliverable No. (dc:identifier) D3.2

Work Package WP3: Assembling Interoperability Assets

Date of Issue (dc:date.issued): March 2, 2015

Status Final

Version (dc:relation.hasVersion) 1.3

Replace (dc:relation.replaces): n/a

File Name FP7-SA610756-D3.2-v1.3

Nature1 (dc:type) Other – Companion to the Transformer software package

Disseminiation Level2

(dc:accessRights)

PU – Public

 Name Organization

Responsibile (dc:publisher): Catherine Chronaki HL7 Foundation

Responsibile (dc:publisher): Harold Solbrig Mayo Clinic

Author (dc:contributor.creator): Kevin Peterson Mayo Clinic

Autore (dc: contributor.creator): Giorgio Cangioli HL7 Foundation

Contributor (dc:contributor):

Contributor (dc:contributor):

Contributor (dc:contributor):

Contributor (dc:contributor):

Contributor (dc:contributor):

Contributor (dc:contributor):

Contributor (dc:contributor):

Contributor (dc:contributor):

Contributor (dc:contributor):

1 Please indicate the nature of the deliverable using one of the following codes:R = Report, P = Prototype, D = Demonstrator, O = Other
2 Please indicate the dissemination level using one of the following codes: PU = Public PP = Restricted to other programme participants (including the Commission

Services). RE = Restricted to a group specified by the consortium (including the Commission Services). CO = Confidential, only for members of the consortium

(including the Commission Services).

FP7-610756 Trillium Bridge D3.2 EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings for pilot use cases

September 21, 2015, D3.2v1.3 Page 3 of 37

Document History

Date Vers. Author Change Status

Feb 12, 2015 0.1 Catherine Chronaki Table of Contents Draft

Feb 25, 2015 0.2 Catherine Chronaki/Harold

Solbrig

Methodology Draft

Feb 27, 2015 0.4 Catherine Chronaki/Harold

Solbrig

Intro, Architecture, Demonstration,

Limitations, Coclusions, Glossary

Draft

March 1, 2015 1.0 Catherine Chronaki Editorial Review Final Draft

March 2, 2015 1.1 Giorgio Cangioli Review of Final Draft Final Draft for

External

Review

March 2, 2015 1.2 Harold Solbrig Review of Final Draft Final Draft for

external review

September 21,

2015

1.3 Catherine Chronaki Corrections suggested by reviewers Final

FP7-610756 Trillium Bridge D3.2 EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings for pilot use cases

September 21, 2015, D3.2v1.3 Page 4 of 37

Table of Contents

1 EXECUTIVE SUMMARY ... 6

2 INTRODUCTION ... 7

3 OBJECTIVES ... 8

4 GLOSSARY ... 9

5 METHODOLOGY ...10

5.1 TECHNICAL APPROACH .. 11

6 ARCHITECTURE OF THE TRANSFORMER ..13

6.1 CONTEXTS, TRANFORMATIONS, AND PATHS .. 13

6.1.1 Contexts .. 13

6.2 GLOBAL TRANSFORMATIONS ... 14

6.3 XPATH EXPRESSIONS IN USE ... 14

6.4 TRANSFORMER FUNCTIONS .. 15

6.4.1 changeTemplateRoots — remove and/or add template identifiers ... 15

6.4.2 newid — generate a new document identifier.. 16

6.4.3 translateTitle — translate a section title .. 16

6.4.4 replaceCode — remove and/or add a code node .. 17

6.4.5 replaceValue — remove and/or add a value node ... 18

6.4.6 translateText — translate a text section (stub) .. 19

6.4.7 addNode — add node before or after a matching path ... 20

6.4.8 setStyleSheet — set the document stylesheet .. 21

6.4.9 mapLanguage — map the document language code ... 22

6.4.10 mapValueSet — transform a coded value using CTS2 ... 22

6.4.11 mapValueSetAndMove — find a code in a relative path, map it and put it at the target 24

7 USER GUIDE ..26

7.1 OVERVIEW ... 26

7.2 PROJECT SETUP ... 26

7.3 BUILD/COMPILE .. 26

7.4 DOWNLOAD/INSTALL ... 26

7.5 DISTRIBUTION PACKAGE ... 26

7.5.1 Components .. 27

7.6 TRANSFORMATIONS PHASES .. 29

7.6.1 Configuring the CCDA <-> epSOS Transformation ... 29

7.6.2 Configuring the Output Format Transformation ... 29

7.7 WEB APPLICATION DEPLOYMENT ... 30

7.8 JAVA API ... 30

7.9 TESTING .. 31

7.10 CONTRIBUTING CHANGES ... 31

7.11 LICENSE .. 31

8 DEMONSTRATION OF THE TRANSFORMER WEB APPLICATION ...32

8.1 WEB PAGE INTERFACE .. 32

9 LIMITATIONS AND FUTURE EXTENSIONS ..36

9.1 FUTURE EXTENSIONS .. 36

10 SUMMARY ..37

FP7-610756 Trillium Bridge D3.2 EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings for pilot use cases

September 21, 2015, D3.2v1.3 Page 5 of 37

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 6 of 37

1 Executive Summary

This document serves as a companion to the software package of the Transformer, which serves as a
proof of concept for the transformation of patient summaries conforming to the European Patient
Summary Guideline (EU PS) that has been adopted for the cross-border exchange of Patient Summaries
among Member States in the European Union and HL7 C-CDA CCD (CCD) specification that has been
adopted for Blue Button+ in the United States.

The development of the Transformer software package has evolved out of the work of Trillium Bridge
Deliverables D3.1 and D3.1 addendum that documented most of the transformations and transcoding
necessary when converting a European patient summary to a United States one and vise versa. The
Transformer also uses the STS2 service developed by Phast (based on the CTS2 standard service) which
offers the value sets and best effort mappings between the value sets used in epSOS and the ones used
in CCD for clinically equivalent sections. All the code systems, value sets and maps are available (login
required) at http://extension.phast.fr/STS_UI. The mappings are delivered to the transformer by the
standard web service interface of CTS2. If a mapping does not exist the event is logged both at the CTS2
and in the transformed document.

The Transformer is structured as a table driven XSLT 2.0 library. The actual transformations are based
on XPATH expressions in a mapping table that is defined in the transformation schema (TBXform.xsd).
The Transformer software has been tested with the a small number patient summary examples that
were derived from selected patient stories developed in WP2 and presented in D2.1/D2.2 and used in
demonstrations of Trillium Bridge in Europe and the United States.

The aim of the transformer software is to support the demonstration of patient summary exchange as
part of the overall Trillium Bridge demonstrations at HIMSS, the eHealthWeek, and elsewhere to collect
evidence on the limitations of transforming patient summaries that are fit for the purpose of use in the
transatlantic setting and to inform the Trillium Bridge feasibility study. Furthermore, it is the intent of
the Trillium Bridge team that the Transformer software is delivered in open source to serve as a shared
interoperability asset that is further improved and elaborated upon.

The most recent version of the transformer code is available on github: https://github.com/trillium-
bridge/trillium-bridge-transformer

“Disclaimer: It should be noted that the transformer has been tested against a limited number of
samples and supersedes D3.1. As a result, only part of the transformations listed in D3.1 have been
implemented/tested in the transformer. Moreover the implementation choices in the transformer do
not always follow the design suggestions of D3.1. The transformer is a live open source distribution. For
the latest version please check the GitHub at http://informatics.mayo.edu/trillium-bridge“ .

http://extension.phast.fr/STS_UI
https://github.com/trillium-bridge/trillium-bridge-transformer
https://github.com/trillium-bridge/trillium-bridge-transformer
http://informatics.mayo.edu/trillium-bridge

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 7 of 37

2 Introduction

The work presented in Deliverables D3.1 and 3.1 addendum, provides a list of the syntactic and value
set transformations that are necessary to transform syntactically and semantically a patient summary
according to the epSOS Patient Summary (ePSOS PS) that EU Patient Summary Guideline is referring to3
to a clinical patient summary conforming to the HL7 CCDA CCD specification and vice versa, covering
the sections that are clinically in correspondance.

The rest of the document is structured as follows: Section 3 presents the objectives of the Transformer
software and this accompanying document. Section 4 provides a glossary of common terms. Section 5
describes the methodological approach. Section 6 describes the architecture of the transformer and the
key functions, for those interested in extending it. Section 7 provides a copy of the user guide, which will
in the future be updated online as a companion to the code of the transformer. Section 8 demonstrates
the functionality of the Transformer web site allowing the transformation of patient summary
documents, optionally using Bing for automatic text translation4. Section 9 presents the limitations of
this work and proposes directions for future extensions and improvements.Finally, section 10 presents
our conclusions.

3 Actually, the transformation is to the epSOS Patient Summary (PS) Implementation Guide (IG), which is the portion of

the patient summary that has implemented to date.

4 The free text translation is out of scope of this project, this as been provided as reference implementation for future

evolution.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 8 of 37

3 Objectives

The objectives of this document is to accompany the transformer software release serving as a layman’s
introduction to:

 Demonstrate the feasibility of the transformation for limited number of representative patient
summary samples to identify limitations and reflect on the feasibility of the overall effort

 Set up a framework for progressive development and refinement of the transformer function by
the open source community

 Draw Recommentations about tooling and infrastructure to allow and to scale across a broad
variety of clinical document templates and associated value sets looking forward to further
development and progressive elaboration.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 9 of 37

4 Glossary

CTS2: Comon Terminology Services 2 (CTS2) is a joint HL7/Object Management Group standard that
specifies a model and API for the discovery, access, distribution of federated terminological resources
on the internet. The standard can be found at http://www.omg.org/spec/cts2/and implementation
iinformation at: http://informatics.mayo.edu/cts2/

GitHub: GitHub is a web-based softwer repository hosting service, which offers distributed revision
control and source code management (SCM) functionality. GitHub provides a web-based graphical
interface and desktop as well as mobile integration. It also provides access control and several
collaboration features such as wikis, task management, bug tracking and feature requests for every
project. It is based and extends Git, a command-line tool with similar functionality. Information about
GitHub can be found at https://github.com/and the Trillium Bridge Transformer GitHub project at:
https://github.com/trillium-bridge/trillium-bridge-transformer

STS2 Service: A service developed by Phast, which offers the value sets used in the epSOS patient
summary and CCD as well as best effort mappings between value sets. Information about PHAST can be
found at http://www.phast.fr/index.php, and the STS CTS2 services at
http://extension.phast.fr/STS_UI.

XPATH: XPath, the XML Path Language, is a query language for selecting nodes from an XML

document. XPath is used to navigate through elements and attributes in an XML document. XPath is a

major element in W3C's XSLT standard. XPath is also used in XQuery and XPointer. See

http://www.w3.org/TR/xpath20/for further information.

XSLT: XSLT is a language for transforming XML documents into XHTML documents or to other XML

documents. See also: http://www.w3.org/TR/xslt20/

http://www.omg.org/spec/cts2/
http://informatics.mayo.edu/cts2/
https://github.com/
https://github.com/trillium-bridge/trillium-bridge-transformer
http://www.phast.fr/index.php
http://extension.phast.fr/STS_UI
http://www.w3.org/TR/xpath20/

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 10 of 37

5 Methodology

The Trillium Transformer builds on the work presented in D3.1 section 6-8, but goes beyond to offer a
general table-driven solution starting from the rules include in D3.1/D3.1 addendum. The Trillium
Bridge Transformer software adresses transformation and transcoding of elements that have HL7 CE
or CD data type 5 and which elements have clinical equivalence on both sides, i.e. sections can be
identified on both sides with the same semantic meaning. Data elements that are mapped directly with
fixed XML fragments, values, or translations are also convered. For those cases, and particularly in the
case of translation the solution presented is not by any means complete. It is just a proof of concept for
future extensions to be built upon.

The transformer calls the CTS2 server and performs a transcoding if necessary. The header and clinical
sections in the two specifications were compared and the coded data elements that were found in
correspondence were identified in D3.1 section 7, which listed in detail the necessary transformations
for each section with respect to syntax and value sets.

For each of the proposed transformations, a set of rules and one or more table entries were created, if a
change was indeed needed. When the data element is to be transformed the templateID usually changes.
Even if the structure of the data element does not need to change, the templateID will change as
appropriate from one of epSOS PS to CCD or vice-versa. The combination of syntax (structure of the the
discrete data) and semantics (the value sets used for a particular data element) give four possibilities:

1. The structure is the same, and the value sets are identical: there is no transformation needed
(except for replacing any template IDs). In this case, the transformer does copies the information
verbatim.

2. The structure is the same, and the value sets have a mapping: there is no syntactic
transformation needed (except for replacing any template IDs), but the data element will have a
value obtained from the mapping. In this case, the transformer translate the code or value to
the target system.

3. The structure is different, and the value sets are identical: there is a transformation needed, but the

value of the data element stays the same. This category also includes the case where the implemented

(XML) structure is used in a different way (e.g the same information is represented as observation.code

in one template and as observation.value in the other as for example the case of allergies section). The

transformer carries a variety of functions for moving, renaming and changing the content of the target

sections

4. The structure is different, and the value sets have a mapping: a transformation is needed, and
the data element will have a value obtained from the mapping.

The transformation rules are written only for those elements that can draw onto the mapping existing
in the CTS server. However, provisions are made on how to handle exceptions such as those cases where
data are not present, available or known. The translation from the language another European Member
State to English and from English to the language of another Member State is part of the normal
operation of the National Contact Point (NCP), and is typically not within the functional perimeter of the
Transformer. However, the Transformer does offer the option of automatic translation through the
Microsoft Bing translation service even though this strictly out of scope for Trillium Bridge.

Each section in D3.1/Section 7 contains a “Transform” part which lists the corresponding Xpaths for the
data element. The transformation converts these XPaths into table entries to generate two
unidirectional transformation epSOS PS->CCD and CCD->epSOS PS. There are potentially two forms of
codes that may undergo mapping: the first involves elements that are explicitly identified as CD or CD-
derived types; the second is a generic value, where the type is identified at runtime as being CD or a
derivative.

5Elements of CE and CD data type are associated with a value set from which a value can be chosen for that particular data
element with or without exceptions.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 11 of 37

Figure 1: Example of the transformation from the epSOS document fragment to CCD.

As decided early on during the preparation of Deliverable D3.1, the root CD is replaced with the mapped
equivalent and the original code is represented as a translation6 . This decision highlights a basic
distinction between translation and transcoding/mapping: a translation of a code in a given CD instance
is not the same as a mapping from one CD instance to a different but related instance.

The second decision we had to make related to codes that have no maps. In that regard the decision was
to formally indicate that no transformation is available. The event should be logged at the CTS2
infrastructure and be addressed operationally:

<value xsi:type="CD" displayName="Nausea" nullFlavor="NI">

 <translation code="R11.0" codeSystem="2.16.840.1.113883.6.3" displayName="Nausea"/>

</value>

Although the “UNC” null flavor would be the most applicable, this is not a part of the null flavor value set

used in the 2005 CDA normative edition, for that reason the generic null flavor “No information” is used

in this context..

The next section outlines the actual structure of the transformer XSLT library. All the code for the
transformer is available at: https://github.com/trillium-bridge/trillium-bridge-transformer

5.1 Technical approach
The key elements of the technical approach are as follows:

1) Value Set Maps are loaded into PHAST server and exposed as CTS2 Maps

2) Correspondence of Paths described in Deliverable D3.1 are converted into entries in the
transformation rules table (Note -- transformations that have no change are not included)

3) Function described in Deliverable D3.1 are implemented in the XSLT Function Library, and are
invoked from entries in the transformation rules.

6 The ISO 21090 specification provides an additional field, codingRationale, that allows one to state whether a code or its
translation is original, post-coded from free text, required, etc., but this attribute is not available in the model currently used.

https://github.com/trillium-bridge/trillium-bridge-transformer

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 12 of 37

Figure 2: The source code of the transformer is available on GitHub in open source.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 13 of 37

6 Architecture of the Transformer

6.1 Contexts, Tranformations, and Paths

6.1.1 Contexts

A context establishes a node that all internal transformations apply to. In the figure below the global
context is that we are transforming from epSOS to CCD. This particular context applies to documents
with a template id of 1.3.6.1.4.1.12559.11.10.1.3.1.1.3. The subsequent tansformations i.e. translateTitle,
changeTemplateRoots, etc. apply to nodes within the document.

Figure 3: The outer context of a document.

Contexts can be nested. The context root can be relative to an outer context, where the template id
transformations apply to relative paths within the surrounding context.

Figure 4: Nested Inner Contexts.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 14 of 37

6.2 Global Transformations
Global transformations apply anywhere within the parent context. The example applies translateTitle
transformation to any title within the surrounding (“global”) context.

Figure 5: Example of a transformation applied everywhere within a context.

6.3 XPath expressions in use
For the purpose of the transformer, nodes with template identifiers are represented as:
nodeName[templateId/@root=”templateid”]/.... , where templateId references the first template
identifier within the node7. As an example, the XML fragment:

could be referenced using the path:
 /component/section[@templateId/@root="2.16.840.1.113883.10.20.22.2.6"]

Nodes with typeCodes are represented as nodeName [@typeCode=“…”]/…. As an example the
fragment:

could be referenced with the path:

 /entry[@typeCode="DRIV"]

Nodes with classCodes are represented as nodeName[@classCode=“…”]/…. As an example, the
playingEntity element below:

would be referenced with:

/participant[@typeCode="CSM"]/participantRole[@classCode="MANU"]/playingEntity[
@classCode="MMAT"]

7 We realize that this is not a final solution, as there is nothing that asserts that template identifiers have to appear in

a particular order within a CCDA document. Future implementations will address this issue by allowing any on the

template identifiers within an element to reference the element.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 15 of 37

A node that has both a templateId and a typeCode or a classCode is represented with just the templateId.
As an example the observation element below:

would be referenced by the path:

/entryRelationship[@typeCode="SUBJ"]/observation[templateId/@root="2.16.840.1.1
13883.10.20.22.4.28"]

All other node paths are just nodeName.

The transformation tool has an option that produces the absolute and relative paths for each node in a
ducment that can be used for transformation creation and debugging. As an example, the last element
above would produce:

6.4 Transformer functions
The transformation functions are documented in TBXform.xsd, which is present in the schema directory
of the Transformer software distribution. Here they are presented to give an idea of the architecture of
the transformer and its potential for extension.

6.4.1 changeTemplateRoots — remove and/or add template identifiers

This function does two things:

 remove all fromid entries

 insert all toid entries

Figure 6: The original template ids are replaced with new ones.

The above rule would transform the input:

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 16 of 37

to:

6.4.2 newid — generate a new document identifier

This function creates a new document id for the transformed patient summary by:

 Suffix or otherwise transform a document identifier to render it unique

 Current suffix is append a “.1” to extension.

The current default choice was the “.1”, although other are also available.

Figure 7: Sample of a newid function in the transformation table.

The transformation aboove would the document identifier:

to:

6.4.3 translateTitle — translate a section title

At the moment, both translateTitle and translateText work with text, the mapping text of a title is based
on from and to languages XML documents. Fixed translations live in tables in the translation directory
with the name translation/{from}to{to}.xml document. Only the first two characters of the language code
is used. As an example, translations from the language, "it-IT" to to "en" are in the table named
"ittoen.xml" in the translations directory.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 17 of 37

Figure 8: Sample title transformation.

The translation above, when applied to CCDA document that is being transformed from Italian to English

would use the following entry in the "ittoen.xml" table:

Figure 9: Translation Table it-ITtoen.xml

to transform the input:

into:

In the future, titles may be associated with language and template ids, with tables named appropriate.
Also note that, if the Microsoft Bing translation option is enabled, titles that aren't in the translation
table will be translated using the translation service instead.

6.4.4 replaceCode — remove and/or add a code node

ReplaceCode removes or adds existing codes as shown in the example below. This is used when you
wish specifically to insert / remove explicitly a code as directed in a template.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 18 of 37

Figure 10: ReplaceCode replaces unavailable code with a specific loinc code.

The above example, when applied to:

will produce:

6.4.5 replaceValue — remove and/or add a value node

ReplaceValue offers the same functionality as ReplaceCode for Values.

Figure 11: Example of replacing an allergy reference code with a specific SNOMED CT code.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 19 of 37

The above transformation, when applied to:

produces:

6.4.6 translateText — translate a text section (stub)

This is a hook for extending the transformer in the future to support translation with a flag. For the sake
of demonstration, we have used Bing translation as an option to the online interface.

Figure 12: TranslateText function.

This function goes through the XML elements finds strings in XML values and attempts to take from
language1 to language2. First it tries the Translation table and if an exact match is found replaces the
text. If it does not find translation then it optionally calls BING. It does not support code ‘embedding’.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 20 of 37

Figure 13: In this version of translateText, in case of failure the text is converted to “tttttt…”

6.4.7 addNode — add node before or after a matching path

This function adds an XML fragment, i.e. set of XML elements before or after a matching path. As an
example, the figure below adds a results component as the last element in the document. This is reflected
by the argument after=”1”. If the argument was before=”1” the node would be placed before the
matching path, which in the example below is “/component”. There is also the option of adding within
or outside the matching path by including or excluding the argument “outside”.

Figure 14: addNode adds an XML fragment after the last component in the document.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 21 of 37

AddNode also has access to the original document identifier, which allows a related document entry to
be constructed. As an example the transformation below adds a related document node that references
the extension and root of the original document.

Figure 15: The use of addNode adds a “relateddocument” node.

The above transformation transforms an input document containing:

and produce:

6.4.8 setStyleSheet — set the document stylesheet

setStyleSheet changes the stylesheet processing instructions included as part of the document. So a
different stylesheet is used for presenting the EU patient summary from one used to render the
corresponding CCD, this function helps adopt a different stylesheet. The example below will set the
stylesheet to “CCD-en.xsl” if it exists, otherwise “CCD.xsl” assuming the target language is English.
However, one can complete omit the option of using a stylesheet when you invoke the transformation.

Figure 16: Setting the stylesheet for the English language.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 22 of 37

6.4.9 mapLanguage — map the document language code

MapLanguage changes the language of the document to the target language. The target language is
passed as a parameter to the transformation itself.

Figure 17: mapLanguage changes the language to the target language in the transform document.

As an example, an incoming document in Italian:

would be transformed to:

If the target language were "en-EN".

6.4.10 mapValueSet — transform a coded value using CTS2

MapValueSet maps a value or a coded node using an external CTS2 web service to retrieve the mapping.
Each map can be used in a different service or local CTS2 XML document.

Figure 18: This transfomation uses the ICD_10 to SNOMED_CT illness map.

The valuesetmap table identifies the URL to be used for the individual maps for specific sections. In the
figure below, the CCDtoEPSOSHeader entry points to a local file with multiple maps, while
ATC_NDF_RT_epSOSActiveIngredient_VS points to the PHAST CTS2 service. The reason for using a local
file is to prefetch parts of the maps to address potential performance overheads. The table approach
also allows subsequent implementations to use other/additional CTS2 services as well. The option
“entireMap” reflects whether the URL provides all map entries or just the one for the supplied code. If a
CTS service had support for entireMap the client would be able to prefetch the map and cache it locally.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 23 of 37

Figure 19: Part of the master value set table used in the Trillium Bridge transformer.

The ICD 10 to SNOMED CT Illness map would transform:

to:

The map would produce the following output:

to:

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 24 of 37

because there is no equivalent map for "I10" in ICD_10 in the target SNOMED CT value set.

6.4.11 mapValueSetAndMove — find a code in a relative path, map it and put it at the target

The mapValueSetAndMove function gets the code in a relative path identified by the source attribute,
transforms values, and moves the revised to another part in the document.

Figure 20: MapValueSetAndMove applies transrmation to the map codes and moves to a different part of the document.

As an example of using this function consider the case below, where the NA code is removed

(designated with the orange rectangle) in the figure below and is replaced by the translation of the

epSOS ingredient code (as designated with the corresponding rectangle in Figure 22.

Figure 21: Part of an EU patient summary in which the mapValueSteAndMove function is applied to manufacturedMaterial.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 25 of 37

Figure 22: Result of applying the MapValueSetAndMove to the element ManufacturedMaterial in the previous figure.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 26 of 37

7 User Guide

The reference implementation of the transformer has been developed by Harold Solbrig and Kevin
Peterson at Mayo and is available as open sorce at https://github.com/trillium-bridge/trillium-bridge-transformer

7.1 Overview
The Trillium Bridge support action extends the European Patient Summaries and Meaningful Use II,
Transitions of Care in the United States to establish an interoperability bridge that will benefit EU and
US citizens alike, advancing eHealth innovation and contributing to the triple win: quality care,
sustainability and economic growth -- http://www.trilliumbridge.eu. The most updated version of the
user guide will be at the TrilliumBridge GitHub.

The Trillium Bridge Transformer is a Java API, Command Line Interface, and Web-based Application to
translate between epSOS Patient Summary documents and HL7 C-CDA Continuity of Care Documents
(CCD).

The following sections provide a guidance on the usage of this package including the pre-requisites and
the build/installation instructions.

7.2 Project Setup

1. Install Java SDK 7+
2. * Install Git
3. * Install Maven
4. * Clone the repository using a Git Clone https://github.com/kevinpeterson/trillium-bridge-

transformer.git

(*) Not necessary unless bulding/compiling. See downloads for binary distributions.

7.3 Build/Compile

From the trillium-bridge-transformer directory, run mvn clean install

This will produce several artifacts, including a ZIP/TAR.GZ file will all necessary components. This
artifacts will be located in the directory:

trillium-bridge-transformer/trillium-bridge-transformer-cli/target/dist

and are named:

trillium-bridge-transformer-cli-{version}-bin.zip

and

trillium-bridge-transformer-cli-{version}-bin.tar.gz

7.4 Download/Install
Download the latest ZIP or TAR.GZ binary distribution. For installation, extract the archive to the
desired location on the filesystem.

7.5 Distribution Package
The trillium-bridge-transformer-cli-{version}-bin.{suffix} package will contain the following
structure (see footnotes below for further information on the various parts § 7.5.1 Components):
├── bin
│ ├── ccda2epsos <- (1)
│ ├── ccda2epsos.bat <- (2)
│ ├── epsos2ccda <- (3)

https://github.com/trillium-bridge/trillium-bridge-transformer
http://www.trilliumbridge.eu/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://maven.apache.org/download.cgi
https://github.com/trillium-bridge/trillium-bridge-transformer#downloadinstall
http://informatics.mayo.edu/maven/content/repositories/releases/edu/mayo/trillium-bridge-transformer-cli/1.0.0.RC3-SNAPSHOT/trillium-bridge-transformer-cli-1.0.0.RC3-SNAPSHOT-bin.zip
http://informatics.mayo.edu/maven/content/repositories/releases/edu/mayo/trillium-bridge-transformer-cli/1.0.0.RC3-SNAPSHOT/trillium-bridge-transformer-cli-1.0.0.RC3-SNAPSHOT-bin.tar.gz

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 27 of 37

│ ├── epsos2ccda.bat <- (4)
│ ├── tbt-webapp <- (5)
│ └── tbt-webapp.bat <- (6)
├── conf
│ ├── cts2fileservice <- (7)
│ │ └── map
│ ├── nooptransform <- (8)
│ ├── outputformats <- (9)
│ │ ├── CDA.xsl
│ │ └── outputformats.json
│ ├── schema <- (10)
│ │ ├── CDA_R2_NormativeWebEdition2010 <- (11)
│ │ └── TBXform.xsd <- (12)
│ ├── tbxform
│ │ ├── FP7-SA610756-D3.1.xml <- (13)
│ │ └── ValueSetMaps.xml <- (14)
│ ├── translation <- (15)
│ │ ├── it-to-en.xml
│ │ └── en-to-es.xml
│ └── xslt
│ ├── CCD.xsl <- (16)
│ ├── CCD-IT.xsl <- (17)
│ ├── CTS2Access.xsl <- (18)
│ ├── TBTransformations.xsl <- (19)
│ ├── TBXform.xsl <- (20)
│ ├── ccda2epsos_options.json <- (21)
│ ├── epsos2ccda.xsl <- (22)
│ ├── epsos2ccda_options.json <- (23)
│ ├── noop.xsl <- (24)
│ └── xslt.properties <- (25)
├── doc
│ └── README.txt
├── lib
│ └── *.jar <- Java jar dependencies
└── webapp
 ├── logs
 │ ├── error.log <- (26)
 │ └── output.log <- (27)
 └── trillium-bridge-transformer-webapp-{version}.war <- (28)

7.5.1 Components

 Launch Scripts

(1) ccda2epsos - the Unix launch file for the CCDA to epSOS transformation

(2) ccda2epsos.bat - the Windows launch file for the CCDA to epSOS transformation

(3) ccda2epsos - the Unix launch file for the epSOS to CCDA transformation
(4) epsos2ccda.bat - the Windows launch file for the epSOS to CCDA transformation

All above commands allow the following parameters:

(ccda2epsos | epsos2ccda) inputFile
 -f (-format, --format) [xml | html | pdf] : The output format
 -h (-help, --help) : Print this message
 -v (-version, --version) : Print the application version

example: ccda2epsos -f html ../my/ccda.xml

(5) tbt-webapp - the Unix launch file for the web applcation
(6) tbt-webapp.bat - the Windows launch file for the web applcation

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 28 of 37

Usage: tbt-webapp(.bat) [--help|--version] [server opts] [[context opts] context ...]

Server opts:
 --version - display version and exit
 --log file - request log filename (with optional 'yyyy_mm_dd'
wildcard
 --out file - info/warn/debug log filename (with optional
'yyyy_mm_dd' wildcard
 --host name|ip - interface to listen on (default is all
interfaces)
 --port n - port to listen on (default 8080)
 --stop-port n - port to listen for stop command
 --stop-key n - security string for stop command (required if --
stop-port is present)
 [--jar file]*n - each tuple specifies an extra jar to be added to
the classloader
 [--lib dir]*n - each tuple specifies an extra directory of jars
to be added to the classloader
 [--classes dir]*n - each tuple specifies an extra directory of
classes to be added to the classloader
 --stats [unsecure|realm.properties] - enable stats gathering servlet context
 [--config file]*n - each tuple specifies the name of a jetty xml
config file to apply (in the order defined)
Context opts:
 [[--path /path] context]*n - WAR file, web app dir or context xml file,
optionally with a context path

example: tbt-webapp --port 5150

By default, web app will bind to port 8080 and be available at http://localhost:8080/

 Local CTS2 Service

(7) cts2fileservice - the root directory for the local file-based CTS2 service. This is the place where
you can put maps that aren't available externally as well as resources that need to be cached locally.
The directory structure matches the CTS2 REST service interface.

 Transformations

(8) nooptransform - the implementaion of the no-op direct copy CCDA <-> epSOS transform. This will
be deprecated and replaced with a live transform.
(9) outputformats - specification of output format XSLT transformations. See here for more
inforamation on output format configuration

 Schema

(10) schema - directory that carries XML Schemas
(11) CDA_R2_NormativeWebEdition2010 - CDA schema directory for resolving CDA document headers
(12) TBXform.xsd - the XML Schema that defines the transformation rules, value set maps and
language transformation tables

 Transformation Tables

(13) FP7-SA610756-D3.1.xml Transformation rules. This is the primary table that controls the
transform. The structure is defined by TBXform.xsd`

(14) ValueSetMaps.xml Value Set Mapping table. This controls which file(s) or service(s) are used to
resolve code and value maps. The structure is defined by TBXform.xsd`

(15) translations - Translation tables. File names are in the form "{from-language}-to-{to-
language}.xml". The structure is defined by TBXform.xsd`

https://github.com/trillium-bridge/trillium-bridge-transformer#configuring-the-output-format-transformation
https://github.com/trillium-bridge/trillium-bridge-transformer#xform-rules
https://github.com/trillium-bridge/trillium-bridge-transformer#vsmaps
https://github.com/trillium-bridge/trillium-bridge-transformer#langxform

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 29 of 37

 XSLT Files specification the main CCDA/epSOS XSLT transformations.

(16) CCD.xsl - Default client-side html formatter for CCD data

(17) CCD_IT.xsl - Italian language html formatter for CCD data (example)

(18) CTS2Access.xsl - XSLT templates and functions for doing CTS2 based code and value transforms
(19) TBTransformations.xsl - XSLT function library for transformations

(20) TBXform.xsl - The main transformation engine that traverses an epSOS or CCD document and
applies the rules in the transformation rules table
(21) ccda2epsos_options.json - Description of screen options (parameters) for the ccda to epsos
transformation
(22) epsos2ccda.xsl -

(23) epsos2ccda_options.json - Description of screen options (parameters) for the epsos to ccda
transformation
(24) noop.xsl -

(25) xslt.properties - Transformation configuration file. See here for more information on
CCDA/epSOS XSLT configuration.

 Web Application

(26) error.log - the standard error log of the web application.
(27) output.log - the standard output log of the web application.
(28) trillium-bridge-transformer-webapp-{version}.war - the web application archive. This can
be then deployed to an application server such as Tomcat, JBoss, etc.

7.6 Transformations phases
There are two different transformation phases. The first phase transforms CCDA XML to epSOS XML (or
vice versa). The next phase (optional) takes that resulting transformed XML and is so required converts
it to a desired output format (such as HTML).

7.6.1 Configuring the CCDA <-> epSOS Transformation

The conf/xslt/xslt.properties file is the configuration file used to configure the XSLTs used to
execute the transformation, and had the following format:
xslt.epsos2ccda=TBXform.xsl
xslt.ccda2epsos=TBXform.xsl

This file should contain two entries as show -- one for each type of transformation. The value of the
xslt.epsos2ccda and xslt.ccda2epsos properties should be the relative path to the XSLT used for
conversion.

By default, the command line applications and the web application will introspect this file and utilize
the specified XSLTs.

7.6.2 Configuring the Output Format Transformation

The conf/outputformats/outputformats.json file is the configuration file used to configure available
output formats and the XSLTs used to implement them, and has the following format:
[
{
 "name": "CDA XSLT", // the name of the transformation
 "xslt": "CDA.xsl", // the relative path to the XSLT
 "output": "HTML", // the type of output (only HTML currently)
 "useFor": "BOTH" // whether the tranform applies to 'CCDA', 'EPSOS', or 'BOTH'
},
{
//... more transforms
}
]

https://github.com/trillium-bridge/trillium-bridge-transformer#configuring-the-ccda---epsos-transformation

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 30 of 37

By default, the command line applications and the web application will introspect this file and utilize
the specified XSLTs.

7.7 Web Application Deployment
The Trillium Bridge Transformer comes with a built-in Jetty server, which can be started from
the bindirectory.

Alternatively, the web application can be deployed to an existing web container. To do this, first ensure
the Trillium Bridge Transformer HOME enviroment variable (TBT_HOME) is set. This will allow the web
application to find the user-specified XSLT configuration files. TBT_HOME should be set to the root
directory of the installation packge:

TBT_HOME
 ├── bin
 ├── conf
 ├── doc
 ├── lib
 └── webapp

Once TBT_HOME has been set, deploy the WAR file located in the webapp directory to the target web
container.

7.8 Java API
To use the Java API directly, first add the Maven repository to your pom.xml file:

...
<repository>
 <id>informatics-releases</id>
 <url>http://informatics.mayo.edu/maven/content/repositories/releases</url>
</repository>
...

Then, add the Maven dependency:

<dependency>
 <artifactId>trillium-bridge-transformer-core</artifactId>
 <groupId>edu.mayo</groupId>
 <version>--version-here--</version>
</dependency>

To get started using the API, instantiate the transfomer:

TrilliumBridgeTransformer transformer = new XsltTrilliumBridgeTransformer();

The interface for the transformer is as follows:

/**
 * Transformation interface for converting XML files to and from CCDA and epSOS format.
 */
public interface TrilliumBridgeTransformer {

 /**
 * Valid output formats
 */
 public enum Format {XML, HTML, PDF}

 /**
 * Convert a CCDA XML document into epSOS format.
 *
 * @param ccdaStream the CCDA document
 * @param epsosStream the output stream
 * @param outputFormat the output format
 */

http://www.eclipse.org/jetty/

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 31 of 37

 public void ccdaToEpsos(InputStream ccdaStream, OutputStream epsosStream, Format
outputFormat);

 /**
 * Convert an epSOS XML document into CCDA format
 *
 * @param epsosStream the epSOS document
 * @param ccdaStream the output stream
 * @param outputFormat the output format
 */
 public void epsosToCcda(InputStream epsosStream, OutputStream ccdaStream, Format
outputFormat);

}

7.9 Testing
From the trillium-bridge-transformer directory, run mvn clean test.

7.10 Contributing changes
 Fork the repository

 Send a pull request

7.11 License
All artifacts are licensed under the Apache License.

.

http://www.apache.org/licenses/LICENSE-2.0.txt

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 32 of 37

8 Demonstration of the Transformer Web Application

8.1 Web page interface
The current graphical user interface of the Transformer appears in the figure below.

Figure 23: Transformer Engine web application interface

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 33 of 37

Figure 24: Paolo’s Italian patient summary is used as input to the transformer.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 34 of 37

Figure 25: Transformation of Paolo’s patient summary with the Bing Automatic Translation on, using BING for use in the US.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 35 of 37

Figure 26: Transformed Paolo’s Italian patient summary without automatic translation for use in the US.

Figure 27: Transformed Martha’s patient summary for use in the EU.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 36 of 37

9 Limitations and Future Extensions

The functionality of the transformer software developed as part of the Trillium Bridge project is limited.
Its intent is to serve only as a proof of concept. The Trillium Bridge team hopes that the open source
community will adopt and extend its functionality.

In this spirit, several limitations have been identified and listed below:

(1) The transformer has ony been tested with a limited set of patient summary samples.

(2) The transformation engine currently depends on the order of the templateIds in the patient
summary. As an example, consider the following order of templateIds

 <entry typeCode="DRIV">
 <act classCode="ACT" moodCode="EVN">
 <templateId root="2.16.840.1.113883.10.20.1.27"/>
 <templateId root="1.3.6.1.4.1.19376.1.5.3.1.4.5.1"/>
 <templateId root="1.3.6.1.4.1.19376.1.5.3.1.4.5.2"/>

 This is not the same as:
 <entry typeCode="DRIV">
 <act classCode="ACT" moodCode="EVN">
 <templateId root="1.3.6.1.4.1.19376.1.5.3.1.4.5.1"/>
 <templateId root="2.16.840.1.113883.10.20.1.27"/>
 <templateId root="1.3.6.1.4.1.19376.1.5.3.1.4.5.2"/>

This issue can be readily corrected.

(3) The transformation code has not been optimized for performance. There is a number of
improvements could increase its speed and reliability. Moreover, the code has not been tested
in a high load environment and the authors make no guarantee about thread safety, memory
leaks, etc.

(4) The HTML tables are transformed literally and that may not readily correspond to the optimal
structure for the transformed patient summary document.

(5) The transformer software code has been tested against a limited number of patient examples
and has not been validated against all of the transformations specified in D3.1. It is likely that
additional transformations will be required as more documents have been tested against the
transformer functions. A possible action to fix it, besides testing additional samples is to go
through D3.1 and determine whether all transformations are supported.

(6) The only title and text field translations that will eventually be available are Italian, Portuguese,
Spanish to English (and visa-versa).

(7) Title and text field translations are based on content rather than template identifier. We may
want to change this in a subsequent release and create translation bound to template
indentifiers.

(8) The transformation engine currently uses a free Bing Translator token that was acquired for the
Trillium Bridge project. This is currently limited to 4 million characters of translation per
month. We need to investigate alternative translation mechanisms and more scalable
approaches for subsequent refind version of the transformer, but that goes beyond the scope of
this project.

9.1 Future extensions
Extending the transformation rules requires expertise in XML, XPATH and, to a lesser degree, XSLT to
maintain. The transformation rules have been designed in such a way that it should be possible to build
a GUI on the front end that would allow viewing and authoring without an intimate understanding of
the underlying technology.

 D3.2 - EU/US CTS-2 Infrastructure with selected Transcoding, Translation and Terminology Mappings - Transformer

September 21, 2015, D3.2v1.3 Page 37 of 37

10 Summary

This document serves as an introduction and guide to the transformer code available at GitHub
https://github.com/trillium-bridge/trillium-bridge-transformer.

It is the hope of the Trillium Bridge team that developers around the world will use it with
acknowledgement to the team that designed and developed it, extend it and make it useful for citizens
of the world that would like to have the patient summary available and fit for the purpose of use in the
transatlantic setting.

https://github.com/trillium-bridge/trillium-bridge-transformer

